Incorporation of Lateral Microfiltration with Immunoaffinity for Enhancing the Capture Efficiency of Rare Cells
Posted by Adam Awdish on
Single Donor Human Whole Blood from Innovative Research was used in the following study:
Kangfu Chen, Jacob Amontree, Jose Varillas, Jinling Zhang, Thomas J. George & Z. Hugh Fan
Scientific Reports
August 26, 2020
Circulating tumor cells (CTCs) are considered to be an important biomarker for the early detection of cancer, in therapeutic monitoring, and in disease prognosis. Unfortunately, CTCs are very rare, with only a few CTCs present among the billions of normal blood cells found in each milliliter of peripheral blood, making CTCs isolation difficult.
There are currently two main methods for isolating rare cells: filtration methods based on physical properties (such as cell size) and methods based on biological properties (such as immunoaffinity). Since CTCs are generally larger than normal blood cells, filtration using microfabricated porous membranes has been employed to isolate CTCs. These microstructures can be made in different sizes, various shapes, and unique arrangements, as well as use different substrate materials, help to change the flow patterns and increase the collisions between CTCs and capture agents on microposts.
Many efforts have been made to increase CTC capture efficiency in immunoaffinity-based methods. One effective approach has been to enhance the interaction between CTCs and the antibodies immobilized in devices. While this provides more opportunities for CTCs and antibodies to interact, it does not prevent the cloaking effect, which is when a CTC is loosely surrounded by platelets and other blood cells, which can reduce the direct contact opportunities between the CTC and antibodies immobilized in the filtration device.
This study tested a new filtration device which combines size-based microfiltration into a microfluidic device with immunoaffinity for enhanced capture efficiency of CTCs. The device design is optimized to make all fluid particles interact with filters, which range in size from 24 to 12 µm, being slightly larger than or having similar dimension of CTCs. These filters are immobilized with antibodies specific to CTCs and thus they function as gates, allowing normal blood cells to pass by while forcing the interactions between CTCs and antibodies on the filter surfaces.
Related products available from Innovative Research also include:
Single Donor Human Red Blood Cells Washed